# On finding Integral Solutions of Ternary Quadratic Equation 

S.Vidhyalakshmi ${ }^{1}$, M.A.Gopalan ${ }^{2}$<br>${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University,Trichy-620 002,Tamil Nadu, India.<br>${ }^{2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy620 002, Tamil Nadu, India.<br>DOI: https://doi.org/10.5281/zenodo. 6670089<br>Published Date: 20-June-2022

Abstract: This paper illustrates the process of obtaining different sets of non-zero distinct integer solutions to the non-homogeneous ternary quadratic Diophantine equations given by $\mathbf{x}^{2}+\mathbf{y}^{\mathbf{2}}=\mathbf{z}^{\mathbf{2}} \mathbf{- 2} \mathbf{k}^{\mathbf{2}}$

Keywords: non-homogeneous quadratic, ternary quadratic, integer solutions.

## 1. INTRODUCTION

It is known that Diophantine equations with multidegree and multiple variables are rich in variety[1,2].
While searching for the collection of second degree equations with three unknowns, the authors came across the papers [3,4,5,6,7,8,9] in which the authors obtained integer solutions to the ternary quadratic equations $x^{2}+y^{2}=z^{2}+N, N=1, \pm 4, \pm 8,12$. The above papers motivated us for obtaining non zero distinct integer solutions to the above equation for other values to N . This communication illustrates process of obtaining different sets of non-zero distinct integer solutions to the non-homogeneous ternary quadratic Diophantine equation given by $x^{2}+y^{2}=z^{2}-2 k^{2}$.

## 2. METHOD OF ANALYSIS

The non-homogeneous ternary quadratic Diophantine equation under consideration is

$$
\begin{equation*}
x^{2}+y^{2}=z^{2}-2 k^{2} \tag{1}
\end{equation*}
$$

The process of obtaining different sets of integer solutions to (1) is illustrated below:

## Illustration 1:

The choice

$$
\begin{equation*}
\mathrm{z}=\mathrm{x}+\mathrm{h}, \mathrm{~h} \geq 0 \tag{2}
\end{equation*}
$$

in (1) leads to the parabola

$$
\begin{equation*}
y^{2}=2 h x+h^{2}-2 k^{2} \tag{3}
\end{equation*}
$$

It is possible to choose $h, \mathrm{x}$ so that the R.H.S. of (3) is a perfect square and the value of y is obtained. Substituting the values of $h, x$ in (2), the corresponding value of $Z$ satisfying (1)

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 9, Issue 1, pp: (16-19), Month: April 2022 - September 2022, Available at: www.paperpublications.org
is obtained. For simplicity and brevity , a few examples are given in Table 1 below:
Table 1: Examples

| h | x | y | z |
| :--- | :--- | :--- | :--- |
| 1 | $3 k^{2} \pm 2 k$ | $2 k \pm 1$ | $3 k^{2} \pm 2 k+1$ |
| 3 | $k^{2} \pm 2 k$ | $2 k \pm 3$ | $k^{2} \pm 2 k+3$ |
| 9 | $k^{2} \pm 4 k$ | $4 k \pm 9$ | $k^{2} \pm 4 k+9$ |
| 19 | $k^{2} \pm 6 k$ | $6 k \pm 19$ | $k^{2} \pm 6 k+19$ |
| 51 | $k^{2} \pm 10 k$ | $10 k \pm 51$ | $k^{2} \pm 10 k+51$ |
| 129 | $k^{2} \pm 16 k$ | $16 k \pm 129$ | $k^{2} \pm 16 k+129$ |

## Illustration 2:

The substitution of the linear transformations

$$
\begin{equation*}
z=(u+1) s, x=u s \tag{4}
\end{equation*}
$$

in (1) leads to the negative pell equation

$$
\begin{equation*}
y^{2}=(2 u+1) s^{2}-2 k^{2} \tag{5}
\end{equation*}
$$

for which the integer solutions exist when u takes particular values.

## Example :1

Considering the value of $u$ to be 1 in (4), it gives the negative pell equation

$$
\begin{equation*}
y^{2}=3 s^{2}-2 k^{2} \tag{6}
\end{equation*}
$$

After some algebra ,the corresponding integer solutions to (6) are given by

$$
\begin{align*}
y_{n+1} & =\frac{k}{2}\left(f_{n}+\sqrt{3} g_{n}\right)  \tag{7}\\
s_{n+1} & =\frac{k}{2}\left(f_{n}+\frac{g_{n}}{\sqrt{3}}\right) \tag{8}
\end{align*}
$$

where

$$
f_{n}=(2+\sqrt{3})^{n+1}+(2-\sqrt{3})^{n+1}, g_{n}=(2+\sqrt{3})^{n+1}-(2-\sqrt{3})^{n+1}
$$

Using (8) in (4), one obtains that

$$
\begin{equation*}
x_{n+1}=\frac{k}{2}\left(f_{n}+\frac{g_{n}}{\sqrt{3}}\right), z_{n+1}=k\left(f_{n}+\frac{g_{n}}{\sqrt{3}}\right) \tag{9}
\end{equation*}
$$

Thus,(7) and (9) represent the integer solutions to (1).
Example :2
Considering the value of $u$ to be 5 in (4),it gives the negative pell equation

$$
\begin{equation*}
y^{2}=11 s^{2}-2 k^{2} \tag{10}
\end{equation*}
$$

After some algebra ,the corresponding integer solutions to (6) are given by

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 9, Issue 1, pp: (16-19), Month: April 2022 - September 2022, Available at: www.paperpublications.org

$$
\begin{gather*}
y_{n+1}=\frac{k}{2}\left(3 f_{n}+\sqrt{11} g_{n}\right)  \tag{11}\\
s_{n+1}=\frac{k}{2}\left(f_{n}+\frac{3 g_{n}}{\sqrt{11}}\right) \tag{12}
\end{gather*}
$$

where

$$
f_{n}=(10+3 \sqrt{11})^{n+1}+(10-3 \sqrt{11})^{n+1}, g_{n}=(10+3 \sqrt{11})^{n+1}-(10-3 \sqrt{11})^{n+1}
$$

Using (12) in (4), one obtains that

$$
\begin{equation*}
x_{n+l}=\frac{k}{2}\left(5 f_{n}+\frac{15 g_{n}}{\sqrt{11}}\right), z_{n+1}=k\left(3 f_{n}+\frac{9 g_{n}}{\sqrt{11}}\right) \tag{13}
\end{equation*}
$$

Thus,(11) and (13) represent the integer solutions to (1).

## Illustration 3:

The substitution of the linear transformations

$$
\begin{equation*}
z=(u+3) s, x=u s \tag{14}
\end{equation*}
$$

in (1) leads to the negative pell equation

$$
\begin{equation*}
y^{2}=(6 u+9) s^{2}-2 k^{2} \tag{15}
\end{equation*}
$$

for which the integer solutions exist when $u$ takes particular values.

## Example :3

Considering the value of $u$ to be 3 in (14), it gives the negative pell equation

$$
\begin{equation*}
y^{2}=27 s^{2}-2 k^{2} \tag{16}
\end{equation*}
$$

After some algebra ,the corresponding integer solutions to (16) are given by

$$
\begin{gather*}
y_{n+1}=\frac{k}{2}\left(5 f_{n}+\sqrt{27} g_{n}\right)  \tag{17}\\
s_{n+1}=\frac{k}{2}\left(f_{n}+\frac{5 g_{n}}{\sqrt{27}}\right) \tag{18}
\end{gather*}
$$

where

$$
f_{n}=(26+5 \sqrt{27})^{n+1}+(26-5 \sqrt{27})^{n+1}, g_{n}=(26+5 \sqrt{27})^{n+1}-(26-5 \sqrt{27})^{n+1}
$$

Using (18) in (14), one obtains that

$$
\begin{equation*}
x_{n+1}=\frac{k}{2}\left(3 f_{n}+\frac{15 g_{n}}{\sqrt{27}}\right), z_{n+1}=k\left(3 f_{n}+\frac{15 g_{n}}{\sqrt{27}}\right) \tag{19}
\end{equation*}
$$

Thus,(17) and (19) represent the integer solutions to (1).
Example :4
Considering the value of $u$ to be 7 in (14), it gives the negative pell equation

$$
\begin{equation*}
y^{2}=51 s^{2}-2 k^{2} \tag{20}
\end{equation*}
$$

After some algebra ,the corresponding integer solutions to (6) are given by

International Journal of Recent Research in Mathematics Computer Science and Information Technology Vol. 9, Issue 1, pp: (16-19), Month: April 2022 - September 2022, Available at: www.paperpublications.org

$$
\begin{align*}
y_{n+1} & =\frac{k}{2}\left(7 f_{n}+\sqrt{51} g_{n}\right)  \tag{21}\\
s_{n+1} & =\frac{k}{2}\left(f_{n}+\frac{7 g_{n}}{\sqrt{51}}\right) \tag{22}
\end{align*}
$$

where

$$
f_{n}=(50+7 \sqrt{51})^{n+1}+(50-7 \sqrt{51})^{n+1}, g_{n}=(50+7 \sqrt{51})^{n+1}-(50-7 \sqrt{51})^{n+1}
$$

Using (22) in (14), one obtains that

$$
\begin{equation*}
x_{n+1}=\frac{k}{2}\left(7 f_{n}+\frac{49 g_{n}}{\sqrt{51}}\right), z_{n+1}=k\left(5 f_{n}+\frac{35 g_{n}}{\sqrt{51}}\right) \tag{23}
\end{equation*}
$$

Thus,(21) and (23) represent the integer solutions

## 3. CONCLUSION

In this paper ,an attempt has been made to obtain different sets of non-zero distinct integer solutions to the ternary quadratic diophantine equations $x^{2}+y^{2}=z^{2}-2 k^{2}$. As diophantine equations are rich in variety ,the readers of this paper may search for choices of the integer solutions to the other forms of ternary quadratic diophantine equations.

## REFERENCES

[1] L.E. Dickson, History of theory of Numbers, Vol. 2, Chelsea publishing Company, Newyork, 1952.
[2] L.J. Mordel, Diophantine Equations, Academic press, Newyork, 1969.
[3] M.A.Gopalan and V.Pandichelvi, On the ternary quadratic equation $x^{2}+y^{2}=z^{2}+1$, Impact J.Sci.Tech: vol 2(2), 55-58,2008.
[4] M.A. Gopalan and P. Shanmuganandham, Integer solutions of ternary quadratic equations $x^{2}+y^{2}=z^{2}-4$, Impact J.Sci.Tech: vol2(2), 59-63, 2008
[5] M.A.Gopalan and P.Shanmuganandham, Integer Solutions of Ternary Quadratic equation $x^{2}+y^{2}=z^{2}+4$, Impact J.Sci.Tech : vol2(3) ,139-141,2008.
[6] M.A.Gopalan and J.Kaliga Rani, On the ternary quadratic equation $x^{2}+y^{2}=z^{2}+8$ Impact J.Sci.Tech: vol 5, No.1, 39-43,2011.
[7] S.Vidhyalakshmi , M.A.Gopalan, Observations On The Paper Entitled "Integer solution of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-4$ "International Journal of Current Science, Vol 12, Issue 1, 401-406, January 2022.
[8] S.Vidhyalakshmi , M.A.Gopalan , Observations on the integer solutions of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-8$,IJMCR , Vol 10 , Issue 5, 2690-2692,May 2022.
[9] A.Vijayasankar,Sharadha Kumar,M.A.Gopalan ,Observations on the Integral Solutions of Ternary Quadratic Equation $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{z}^{2}+12$,IJRPR , Vol 3 ,Issue 2, 808-814, 2022

